
1

Easy-to-Write & Scalable

Shared-Memory Applications

with Transactions

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos

2C. Kozyrakis, February 2006

Parallelism is Finally Mainstream…

� All computer vendors are now building multiprocessors

� Diminishing returns from uniprocessor architectures

� 4, 8, 16, …, 1024, … processors on a chip

� Scientific computing no longer a niche

� All programs must now become parallel programs

– Need: practical & efficient parallel model

� Parallel programs must be scalable and portable

– Need: write code once, run efficiently at any scale

� This talk

� Look at a promising solution from mainstream computing

– Transaction-based shared-memory

� Can it help with large-scale parallel computing?

3C. Kozyrakis, February 2006

The State of the Art

� Shared-memory multiprocessors

� Implicit communication hidden from programmer

� Easy to write first version; difficult to optimize

� Difficult to write SM programs with >16 CPUs (NUMA)

� Message-passing multiprocessors

� Explicit communication orchestrated by programmer

� Difficult to write first version; simpler to tune afterwards

� MPI: the defacto standard for large-scale machines

– But too painful to use in most commercial environments

� Common pains

� Programmer productivity suffers

� Architectural knowledge required to tune performance

� Each 10x increase in scale requires revisiting everything

4C. Kozyrakis, February 2006

The Quest for Scalable Parallelism

� Summary: we want SM ease with MP performance

� Application characteristics

� Large data-sets that stress caches and interconnects

� Irregular & adaptive patterns that complicate programming

� Detailed requirements

� Scalable execution resources (FLOPS)

– This is the easy part of the problem

� Efficient mechanisms to manage locality & communication

� Methods to instrument & analyze system behavior

� Methods to dynamically tune program to system behavior

� Reliable operation in the presence of faults

5C. Kozyrakis, February 2006

Transactional Memory (TM) 101

� Shared-memory with transactional semantics

� Program access shared data using atomic tasks

� System provides atomicity, isolation, and consistency

� Parallel performance through optimistic concurrency

� Assume independence and execute without any locks

� If not true, abort and re-execute

� TM simplifies parallel programming

� Coarse-grain, non-blocking synchronization for parallel algorithms

� Speculative parallelization for sequential algorithms

6C. Kozyrakis, February 2006

TCC: All Transactions, All The Time

CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Violate

Execute

Code

ld 0xbeefRe-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...

ld 0xbeef

...

...

0xbeef
0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...

Transactional coherence with deadlock-freedom guarantees

Intuitive consistency model that allows aggressive re-ordering

See [ISCA’04] for details

7C. Kozyrakis, February 2006

Small-scale Implementation (CMP)

� Similar implementations for other CMP systems

Changes for TCC support

8C. Kozyrakis, February 2006

Small-scale Implementation (CMP)

Speculatively-Read Bits:

ld 0xdeadbeef

Speculatively-Modified Bits:

st 0xcafebabe

Violation Detection:

Compare incoming
address to SR bits

Commit:

Read pointers from Store
Address FIFO, flush data
with SM bits set

See [PACT’05] for details

9C. Kozyrakis, February 2006

Small-scale Performance

� Good performance across
application domains

� More details at [ISCA’04,
ASPLOS’04, PACT’05,
SCOOL’05]

� Fee

� Good performance across applications domains

� Easy to program and tune using feedback from hardware

� TCC hardware continuously monitors memory accesses

� Can identify most important performance bottlenecks for programmer

0

4

8

12

16

barnes equake water ocean lbp ida classify SPECjbb

S
p

e
e
d

u
p

8 CPUs 16 CPUs

scientific AI/Robotics enterprise

10C. Kozyrakis, February 2006

Large-scale Transactional Memory?

� Can TM scale beyond CMPs?

� How do you implement TM in a NUMA environment?

� Can communication be optimized automatically?

� How do you reach efficiency of message-passing model?

� Can TM assist with system reliability?

� How do we exploit the atomicity in the case of faults?

� What is the prototype system for this research?

� How do we provide a machine fast enough for scientists and
flexible enough for architects?

11C. Kozyrakis, February 2006

Large-scale TCC Performance

� Directory-based implementation for NUMA systems

� Using parallel commit with two-phase protocol

� Same execution model from programmer’s perspective

� Scalable performance for large processor counts

� Limited by dataset sizes for most of our experiments

0

10

20

30

40

50

60

barnes equake radix swim tomcatv volrend water

S
p

e
e

d
u

p

16 CPUs

32 CPUs

64 CPUs

12C. Kozyrakis, February 2006

Automatic Locality Optimizations

� Build upon continuous memory monitoring

� Learn which data accessed within same transaction

� Learn associations between code and data groups

� Learn common producer/consumer patterns

� Optimizations enabled

� Aggressive prefetching without sequential patterns

� Schedule transactions close to their data

� Proactively turn transaction commits to message sends

� The overall opportunity

� Get message-passing behavior from a shared-memory system

13C. Kozyrakis, February 2006

TCC Profiling Environment

� HW continuously track performance

� Log events, cause, cost

� Aggregates over multiple occurrences

� Periodically flush to main memory

� Profiling accuracy

� Pinpoints top performance problems

– Type of performance problem

– Related PCs, object addresses

� Optimize applications in 2-3 steps

� Profiling cost

� <1% performance loss

� <1% area overhead See [ICS’05] for details

14C. Kozyrakis, February 2006

Reliability Optimizations

� Micro-level: TM provides failure atomicity

� Easy “undo” of computation after fault is detected

� Works with for both hardware and software faults

� Allows software to decide how to best handle error recovery

– Retry, migrate & retry, fail safely…

� Macro-level: TM simplifies app-level checkpointing

� Transactions define clean boundaries for checkpoints

� Can take checkpoint without stopping application

� The overall opportunity

� A reliability framework that requires minimal programmer or
operator involvement

15C. Kozyrakis, February 2006

The Research Infrastructure: FARM

� An industrial strength, scalable prototype

� Full chassis: 19 TFLOPS and 280GB DRAM

� Advantages

� Programmers: research features at industrial speeds

� Architects: customizable memory & communication system

X
D
R
-D
R
A
M

X
D
R
-D
R
A
M

X
D
R
-D
R
A
M

D
D
R
-D
R
A
M

16C. Kozyrakis, February 2006

Conclusions

� Large-scale parallelism is now a general need

� All programs must now become parallel programs

� Parallel programs must be scalable and portable

� Transactional memory

� Shared-memory with atomicity guarantees

� Good performance with easy coding/tuning for CMPs

� TM can also help with scalable parallelism

� Automatic optimizations for locality

� Support for system reliability

� Promising direction for parallel systems research

� Hardware, runtime, programming models, …

17C. Kozyrakis, February 2006

Questions?

More info at http://tcc.stanford.edu

